Prove or disprove the congruence below:
$$15 + 111^5· (−10)\equiv 5 \pmod{11}$$
I am not sure where to start because we cannot use a calculator this problem? Can anyone guide me?
Prove or disprove the congruence below:
$$15 + 111^5· (−10)\equiv 5 \pmod{11}$$
I am not sure where to start because we cannot use a calculator this problem? Can anyone guide me?
(Since the OP asked, I am adding more detail here that Brian M. Scott has already put in his answer. He wrote it first!)
Even without a calculator we easily see that $15=1\cdot 11+4$, so
$$15\equiv 4 \pmod {11}$$
Similarly, $111=10\cdot 11+1$, so
$$111\equiv 1 \pmod {11}$$
And $-10=-1\cdot 11+1$, so
$$-10\equiv 1 \pmod {11}$$
Substituting all those into the original expression,
$$15+111^5\cdot (-10)\equiv 4+1^5\cdot(1)\equiv 4+1\equiv 5\pmod {11}$$
Replace all arguments of sums and products by their remainders mod $11$. The remainders are
$$ \begin{align} \color{#90f}{15} &\,=\, 11\cdot 1 \color{#90f}{\,+\, 4}\,\equiv\,\color{#90f}{ 4}\\ \color{#0a0}{111} &\,=\, 11\cdot 10 \color{#0a0}{+ 1}\equiv\,\color{#0a0}1\\ \color{#c00}{-10} &\,=\, 11(-1)\color{#c00}{\!+\! 1}\equiv\,\color{#c00}1\\ \\ {\rm Thus}\ \ &\quad\ \color{#90f}{15}+\color{#0a0}{111}^5\color{#c00}{(-10)}\\ \quad\ \ &\equiv\ \color{#90f}4 +\ \color{#0a0}{(1)}^5\,\color{#c00}{(1)}\\ \quad\ \ &\equiv\ 5\end{align}\qquad $$
Such argument replacements are valid by the Congruence Sum and Product Rules, i.e.
$$\color{#0a0}{A\equiv a},\ \color{}{B\equiv b}\,\Rightarrow\, \color{#0a0}A\color{}B\equiv \color{#0a0}a\color{}b,\,\ \color{#0a0}A+\color{#}B\equiv \color{#0a0}a+\color{#}b\qquad $$
or, more generally, composition of such, i.e. the Polynomial Congruence Rule.
HINT: $111=10\cdot11+1\equiv1\pmod{11}$, and $10\equiv-1\pmod{11}$, so $-10\equiv1\pmod{11}$.