Note that
$$
\frac{x(e^{x+h}-e^x)}{h}=\frac{x(e^x\cdot e^h-e^h)}{h}
=
\frac{xe^x(e^h-1)}{h}=xe^x\frac{e^h-1}{h}
$$
and the limit of the last factor is the derivative of $t\mapsto e^t$ at $0$, so it is $1$ rather than infinity.
How do you compute it? It depends on how you define $e$: if you define $e$ as the only number $a$ such that
$$
\lim_{h\to0}\frac{a^h-1}{h}=1
$$
then you're done.
If you define $e=\lim_{n\to\infty}(1+1/n)^n$ then much more work needs to be done. First show that
$$
\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^{\!x}=e=
\lim_{x\to-\infty}\left(1+\frac{1}{x}\right)^{\!x}
$$
Then we can do the substitution $x=1/t$ and get
$$
\lim_{t\to0}(1+t)^{1/t}=e
$$
so, by continuity of the logarithm,
$$
\lim_{t\to0}\frac{\log(1+t)}{t}=1
$$
Now set $\log(1+t)=h$ so that $t=e^h-1$; therefore
$$
\lim_{h\to0}\frac{h}{e^h-1}=1
$$