I'm trying to prove that for every $n\in\mathbb{N} $ this inequality holds:
$0<\left|e-S_{n}\right|<\frac{3}{(n+1)!} $
S.T: $S_{n}=1+1+\frac{1}{2!}+\dots+\frac{1}{n!} $
By induction:
assuming for $n$ and proving for $n+1$:
$\left|e-S_{n+1}\right|=\left|e-S_{n}-\frac{1}{(n+1)!}\right|=\left|(e-S_{n})+(-\frac{1}{(n+1)!})\right|<|e-S_{n}|+\left|-\frac{1}{(n+1)!}\right|<\frac{3}{(n+1)!}+\left|-\frac{1}{(n+1)!}\right| $
but how can i continue from this stage?
edit note: i can't use the fact that: $lim_{n\rightarrow\infty}S_{n}=e $
thank you.