This is perhaps not the most direct way. Let $x = \sin^2(\theta)$. We then have $dx = 2 \sin(\theta) \cos(\theta) d \theta$. Hence, $$I_n = \int_0^{\pi/2} \sin^{2n}(\theta) \cos^{2n}(\theta) 2 \sin(\theta) \cos(\theta) d \theta$$ $$I_n = \frac1{2^{2n}} \int_0^{\pi/2} \sin^{2n+1}(2 \theta) d \theta = \frac1{2^{2n+1}} \int_0^{\pi} \sin^{2n+1}(\phi) d \phi = \frac1{2^{2n}} \int_0^{\pi/2} \sin^{2n+1}(\phi) d \phi$$
Let us denote $$J_{n} = \int_0^{\pi/2} \sin^{n}(\phi) d \phi.$$ Refer here for the recurrence involving $J_n$. We have $J_{2n+1} = \frac{2n}{2n+1} J_{2n-1}$. Hence, $$I_n = \frac{J_{2n+1}}{2^{2n}} = \frac14 \frac{2n}{2n+1} \frac{J_{2n-1}}{2^{2n-2}} = \frac14 \frac{2n}{2n+1} I_{n-1}.$$
EDIT:
The integral $I_n$ is $\beta(n+1,n+1)$ where $\beta(x,y)$ is the $\beta$ function defined as $\displaystyle \beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$. $\beta(x,y)$ also has a representation in terms of the $\Gamma$ function given by $\displaystyle \beta(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$.
Hence, $$\begin{align} I_n & = \beta(n+1,n+1) = \frac{\Gamma(n+1) \Gamma(n+1)}{\Gamma(2n+2)} = \frac{n! n!}{(2n+1)!} = \frac{n^2}{(2n+1)(2n)}\frac{(n-1)! (n-1)!}{(2n-1)!}\\
& = \frac{n}{2(2n+1)} \frac{\Gamma(n) \Gamma(n)}{\Gamma(2n)} = \frac14 \frac{2n}{2n+1} \beta(n,n) = \frac14 \frac{2n}{2n+1} I_{n-1}. \end{align}$$
(I was adding this part when m. k. posted the answer).