$$\int_0^\infty \frac{1}{1+x^n} \, dx=\frac 1n \int_0^\infty \frac{x^{\frac 1n-1}}{1+x} \, dx=\frac 1n \left(\frac{\pi}{\sin \frac{\pi}n} \right)=\frac{\pi}n\csc\left(\frac{\pi}n\right)$$
Which rule or law has been applied after the first equality sign?