$(2^m - 1, 2^n - 1) = 2^d - 1$ where $d = (m,n)$
my work:
I assumed $m = da$ , $n = db$ for $a,b \in \mathbb{Z}$.
Now, $2^m - 1$ = $2^{da} - 1$ = $(2^d)^a - 1$ = $x^a - 1$ where $x = 2^d$.
similarly
$2^n - 1$ = $x^b - 1$
Now,
using $x^a - 1 = (x - 1)(x^{a-1} + x^{a - 2} + .... + x + 1)$ and $x^b - 1 = (x - 1)(x^{b - 1} + x^{b - 2} + ..... + x + 1)$
clearly $(x - 1)$ is a factor common in both but how to show that
$(x^{a-1} + x^{a - 2} + .... + x + 1)$ and $(x^{b-1} + x^{b - 2} + .... + x + 1)$ can't have a common factor