Suppose we seek to evaluate (the term for $j=0$ is zero)
$$\frac{1}{2}
\sum_{j=0}^b \left({b\choose j} + e_j\right)
\left({b\choose j} + e_j-1\right)
{n+b-j\choose 2b}.$$
This sum has four components, call them $A,B,C$ and $D.$
We have
$$A = \frac{1}{2}
\sum_{j=0}^{b/2} {b\choose 2j}^2 {n+b-2j\choose 2b},$$
and
$$B = - \frac{1}{2}
\sum_{j=0}^{b/2} {b\choose 2j} {n+b-2j\choose 2b},$$
and
$$C = \frac{1}{2}
\sum_{j=0}^{b/2} {b\choose 2j+1}^2 {n+b-2j-1\choose 2b},$$
and finally
$$D = \frac{1}{2}
\sum_{j=0}^{b/2} {b\choose 2j+1} {n+b-2j-1\choose 2b}.$$
Starting with $A$ we put (we will use this substitution several times
with different values of $b$ and $j$)
$${b\choose 2j}
= \frac{1}{2\pi i}
\int_{|z|=\gamma}
\frac{(1+z)^b}{z^{2j+1}} \; dz$$
to get for the sum
$$\frac{1}{2} \frac{1}{2\pi i}
\int_{|z|=\gamma}
\frac{(1+z)^b}{z}
\sum_{j=0}^{b/2} {b\choose 2j} {n+b-2j\choose 2b}
\frac{1}{z^{2j}} \; dz.$$
For the inner sum we get
$$\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(1+w)^{n+b}}{w^{2b+1}}
\sum_{j=0}^{b/2} {b\choose 2j} \frac{1}{z^{2j}(1+w)^{2j}}
\; dw
\\ = \frac{1}{2} \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(1+w)^{n+b}}{w^{2b+1}}
\left(\left(1+\frac{1}{z(1+w)}\right)^b
+ \left(1-\frac{1}{z(1+w)}\right)^b\right) \; dw
\\ = \frac{1}{2} \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(1+w)^{n}}{w^{2b+1} z^b}
\left(\left(z+zw+1\right)^b
+ \left(z+zw-1\right)^b\right) \; dw
.$$
This lets us evaluate $B$ which has $z=1$ to obtain
$$-\frac{1}{4} \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(1+w)^{n}}{w^{2b+1}}
\left(\left(w+2\right)^b
+ \left(w\right)^b\right) \; dw.$$
We get for $C$ the integral
$$\frac{1}{2} \frac{1}{2\pi i}
\int_{|z|=\gamma}
\frac{(1+z)^b}{z}
\sum_{j=0}^{b/2} {b\choose 2j+1} {n+b-2j-1\choose 2b}
\frac{1}{z^{2j+1}} \; dz.$$
The inner sum here evaluates to
$$\frac{1}{2} \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(1+w)^{n}}{w^{2b+1} z^b}
\left(\left(z+zw+1\right)^b
- \left(z+zw-1\right)^b\right) \; dw
.$$
This lets us evaluate $D$ which has $z=1$ to obtain
$$+\frac{1}{4} \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(1+w)^{n}}{w^{2b+1}}
\left(\left(w+2\right)^b
- \left(w\right)^b\right) \; dw.$$
It follows that $B+D$ is
$$-\frac{1}{2} \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(1+w)^{n}}{w^{2b+1}} w^b\; dw
= -\frac{1}{2} {n\choose b}.$$
On the other hand $A+C$ is
$$\frac{1}{2} \frac{1}{2\pi i}
\int_{|z|=\gamma}
\frac{(1+z)^b}{z}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(1+w)^{n}}{w^{2b+1} z^b}
\left(z+zw+1\right)^b \; dw \; dz
\\ = \frac{1}{2} \frac{1}{2\pi i}
\int_{|z|=\gamma}
\frac{(1+z)^b}{z}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(1+w)^{n}}{w^{2b+1}}
\left(\frac{1+z}{z}+w\right)^b \; dw \; dz.$$
This is
$$\frac{1}{2}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(1+w)^{n}}{w^{2b+1}}
\frac{1}{2\pi i}
\int_{|z|=\gamma}
\frac{(1+z)^b}{z}
\sum_{q=0}^b {b\choose q}
\left(\frac{1+z}{z}\right)^q w^{b-q} \; dz \; dw
\\ = \frac{1}{2}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(1+w)^{n}}{w^{2b+1}}
\frac{1}{2\pi i}
\int_{|z|=\gamma}
\sum_{q=0}^b {b\choose q}
\frac{(1+z)^{b+q}}{z^{q+1}} w^{b-q} \; dz \; dw
\\ = \frac{1}{2}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(1+w)^{n}}{w^{2b+1}}
\sum_{q=0}^b {b\choose q} {b+q\choose q} w^{b-q} \; dw
\\ = \frac{1}{2}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\sum_{q=0}^b {b\choose q} {b+q\choose q}
\frac{(1+w)^{n}}{w^{b+q+1}} \; dw.$$
This finally yields
$$\frac{1}{2}
\sum_{q=0}^b {b\choose q} {b+q\choose q} {n\choose b+q}
= \frac{1}{2}
\sum_{q=0}^b {b\choose q}
\frac{n!}{b!q!(n-b-q)!}
\\ = \frac{1}{2} {n\choose b}
\sum_{q=0}^b {b\choose q}
\frac{(n-b)!}{q!(n-b-q)!}
= \frac{1}{2} {n\choose b}
\sum_{q=0}^b {b\choose q} {n-b\choose q}
\\ = \frac{1}{2} {n\choose b}
\frac{1}{2\pi i}
\int_{|v|=\epsilon}
\frac{(1+v)^{n-b}}{v}
\sum_{q=0}^b {b\choose q} \frac{1}{v^q} \; dv
\\ = \frac{1}{2} {n\choose b}
\frac{1}{2\pi i}
\int_{|v|=\epsilon}
\frac{(1+v)^{n-b}}{v}
\left(1+\frac{1}{v}\right)^b \; dv
\\ = \frac{1}{2} {n\choose b}
\frac{1}{2\pi i}
\int_{|v|=\epsilon}
\frac{(1+v)^{n}}{v^{b+1}} \; dv
= \frac{1}{2} {n\choose b}^2.$$
The conclusion is that
$$A+B+C+D
= \frac{1}{2} {n\choose b}^2
- \frac{1}{2} {n\choose b}
= \frac{1}{2} {n\choose b}
\left({n\choose b}-1\right),$$
which was to be shown.
Another instance of the Egorychev method is at this
MSE link.
Addendum Tue Apr 14 21:38:00 CEST 2015.
As per the comments we can evaluate $B+D$ as follows.
$$B+D = -\frac{1}{2}
\sum_{j=0}^b {b\choose j} (-1)^j {n+b-j\choose 2b}.$$
Using the standard integral substitution from above this yields
$$-\frac{1}{2}
\frac{1}{2\pi i}
\int_{|v|=\epsilon}
\frac{(1+v)^{n+b}}{v^{2b+1}}
\sum_{j=0}^b {b\choose j} (-1)^j \frac{1}{(1+v)^j}\; dv
\\ = -\frac{1}{2}
\frac{1}{2\pi i}
\int_{|v|=\epsilon}
\frac{(1+v)^{n+b}}{v^{2b+1}}
\left(1-\frac{1}{1+v}\right)^b \; dv
\\ = -\frac{1}{2}
\frac{1}{2\pi i}
\int_{|v|=\epsilon}
\frac{(1+v)^{n+b}}{v^{2b+1}}
\left(\frac{v}{1+v}\right)^b \; dv
\\ = -\frac{1}{2}
\frac{1}{2\pi i}
\int_{|v|=\epsilon}
\frac{(1+v)^{n}}{v^{b+1}} \; dv
= -\frac{1}{2}{n\choose b}.$$