Hint $\ $ If $\,f(x)\,$ is a polynomial with integer coef's then $\,n\!+\!1\mid f(n)\iff n\!+\!1\mid f(-1)$
since, by division, $\, f(n) = q(n)(n\!+\!1) + r,\,$ so $\,f(-1) = r\,$ be evaluating at $\,n=-1.$
Therefore $\,n\!+\!1\mid f(n)\iff n\!+\!1\mid f(n)-q(n)(n\!+\!1) = r = f(-1)$
Remark $\ $ If you know modular arithmetic then the proof is more intuitive:
${\rm mod}\ n\!+\!1\!:\,\ \color{#c00}{n\equiv -1}\,\Rightarrow\, f(\color{#c00}n)\equiv f(\color{#c00}{-1})\ $ so $\ f(n)\equiv 0\iff f(-1)\equiv 0$
where above we used the Polynomial Congruence Rule.