Let $x = 1+1+1+1+1+1 ...$
Let $y=1-1+1-1+1-1 . . .$
First, let's find the value of $y$.
The partial sums of $y$ are $s_n=(1,0,1,0,1,0,...)$
If you take the means of the partial sums, you will get the sequence $(\frac11,\frac12,\frac23,\frac24,\frac35,...)$ which obviously converges to $\frac12$.
Another way (This time algebraically):
$$y=1-1+1-1+1-1 . . .$$
$$1-y=1-(1-1+1-1+1-1+1-1 ...)$$
$$1-y=y$$
$$2y=1$$
$$y=\frac12$$
The value of $y$ is therefore $\frac12$
$$x-y= (1+1+1+1+1+1+1 . . .)-(1-1+1-1+1-1+1-1 . . .) $$ $$x-\frac12 = (1+1+1+1+1+1+1 . . .)-(1-1+1-1+1-1+1-1 . . .) $$
$$x=(1+1+1+1+1+1+1 . . .)$$
$$-y=-(1-1+1-1+1-1+1 . . .)$$
So $x-y=$
$$(1+1+1+1+1+1+1 . . .)$$
$$(-1+1-1+1-1+1-1 . . .)$$
If you add those together, you'll see that the $-1$'s cancel out very other $1$, and that the $+1$'s add together, which equals:
$$0+2+0+2+0+2+0+2 ...$$ Or,
$$2+2+2+2+2+2+2 ...=2(1+1+1+1+1+1+1)=2x$$ Therefore, $x-y=2x$
$y=\frac12$
$x-\frac12=2x$
Subtract $x$ from both sides, and you get,
$$-\frac12=x$$
Is this a correct proof that $1+1+1+1+1+1 ...=-\frac12$?