Simplification of the second expression is probably more useful initially, to disentangle the implication statement and give sight of what to work on next.
$$\begin{align}\\
\neg R \land (Q \Rightarrow \neg(P \land \neg R))
&= \neg R \land (\neg Q \lor \neg(P \land \neg R))\\
&= \neg R \land (\neg Q \lor \neg P \lor R)\\
&= \neg R \land (\neg Q \lor \neg P \lor R)\\
&= (\neg R \land \neg Q) \lor (\neg R \land \neg P) \lor (\neg R \land R)\\
&= (\neg R \land \neg Q) \lor (\neg R \land \neg P)\\
\end{align}$$
... which gets us really close to the desired statement; we just need to eliminate an extra term from the first expression.
$$\begin{align}\\
(\neg P \land \neg R) \lor (P \land \neg Q \land \neg R)
&= (\neg P \lor (P \land \neg Q)) \land \neg R\\
&= ((\neg P \lor (\neg P \land \neg Q )) \lor (P \land \neg Q)) \land \neg R\\
&= (\neg P \lor ((\neg P \land P) \lor \neg Q)) \land \neg R\\
&= (\neg P \lor \neg Q) \land \neg R\\
&= (\neg P \land \neg R) \lor (\neg Q \land \neg R) \\
\end{align}$$
which is equivalent to the second expression as required.