$$\lim _{n\to \infty \:}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2n-1}-\frac{1}{2n}\right)$$
How I evaluate this limit?
$$\lim _{n\to \infty \:}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2n-1}-\frac{1}{2n}\right)$$
How I evaluate this limit?
This limit is the same as $$ \lim_{x \uparrow 1} \lim_{n \to \infty} \left( x - \frac{x^2}{2} + \dotsb - \frac{x^{2n}}{2n} \right), $$ which can be written as $$ \lim_{x\uparrow 1} \lim_{n \to \infty} \int_0^x ( 1 - t + \dotsb -t^{2n-1} ) \, dt = \lim_{x\uparrow 1} \lim_{n\to\infty} \int_0^x \frac{1-t^{2n}}{1+t} \, dt $$ Since $x<1$, the $t^{2n}<x^{2n}$ tends uniformly to $0$ as $n \to \infty$, so we can interchange the limit and the integral to get $$ \lim_{x\uparrow 1} \int_0^x \frac{dt}{1+t} = \lim_{x\uparrow 1} \log{(1+x)}-0 = \log{2}. $$