From Wikipedia:
If $M$ is a metric space with metric $d$, and $\sim$ is an equivalence relation on $M$, then we can endow the quotient set $M/{\sim}$ with the following (pseudo)metric. Given two equivalence classes $[x]$ and $[y]$, we define $$ d'([x],[y]) = \inf\{d(p_1,q_1)+d(p_2,q_2)+\dotsb+d(p_{n},q_{n})\} $$ where the infimum is taken over all finite sequences $(p_1, p_2, \dots, p_n)$ and $(q_1, q_2, \dots, q_n)$ with $[p_1]=[x], [q_n]=[y], [q_i]=[p_{i+1}], i=1,2,\dots, n-1$. In general this will only define a pseudometric, i.e. $d'([x],[y])=0$ does not necessarily imply that $[x]=[y]$. However for nice equivalence relations (e.g., those given by gluing together polyhedra along faces), it is a metric.
- I wonder why the quotient metric is defined that way?
- Instead, how about using the distance between two subsets of the metric space $$ d'([x],[y]) = \inf\{d(p,q)\} $$ the infimum is taken over all $(p,q)$ such that $[p]=[x], [q]=[y]$?
Thanks and regards!