$ A:=\{ f : \mathbb{Z}\rightarrow \mathbb{ Z} \} ,\ B:=\{ f: \mathbb{
Z}\rightarrow \{ 0,1 \} \} $ so that $$ |A|\geq
|B|= 2^{\aleph_0 }=
\mathfrak{c}$$ where $
\mathfrak{c}=|\mathbb{ R}|$ and $
\aleph_0=|\mathbb{N}|$ (cf. Schroder-Bernstein theorem)
Since $|\mathbb{Z}|=|\mathbb{N}|$, then $|A|=|A'|$ where $A':=\{f :
\mathbb{N}\rightarrow \mathbb{N}\}$. And $|B|=|B'|$ where $B':=\{f : \mathbb{
N}\rightarrow \{0 , 1\} \}$
Now we will match an element in $A'$ into an element in $B'$.
For $f\in A'$, then define $$ 1\underbrace{0\cdots 0}_{f(1)-\text{times}}
1\underbrace{0\cdots 0}_{f(2)-\text{times}} 1 \cdots $$
so that we have $F\in B'$ : $$F(1)=1,\ F(i)=0 \ (2\leq i \leq 1+
f(1)),\ \cdots $$