1

I am supposed to find the dual of

max $c^Tx$

subject to $a \le Ax \le b$

$l \le x \le u$.

In order to find the dual I think I have to write it in standard form, the standard form is:

max $Ax'$

subject to: $A'x'\le b'$

$x' \ge 0$.

The way I try to transform it is like this:

max $c^Tx$

subject to $Ax \le b$

$-Ax \le-a$

$x \le u$

$-x \le -l$

Any tips on how to proceed?, thanks.

user119615
  • 10,176
  • 5
  • 44
  • 112

1 Answers1

0

Rewrite the problem into its canonical form.

\begin{align} \max z = c^T x & \\ \text{s.t. } \begin{bmatrix} A \\ -A \\ I \\ -I \end{bmatrix} x &\le \begin{bmatrix} b \\ -a \\ u \\ -l \end{bmatrix} \end{align}

Now, the standard form will be very clear.

\begin{align} \max z = c^T x & \\ \text{s.t. } Ax + s_1 &= b \\ -Ax + s_2 &= -a \\ x + s_3 &= u \\ -x + s_4 &= -l \\ s_i &\ge 0 \,\forall i = 1,\dots,4 \end{align}

Depending on the sign of $a,b,l,u$, you may need to multiply both sides of a constraint by $-1$ so that the RHS of these four equalities is positive.

  • Write the dual from the standard form is very hard and inefficient.
  • Memorizing the table is hard.
  • Use SOB method for converting primals to duals.

Therefore, the dual is the following LPP.

\begin{align} \max z = \begin{bmatrix} b \\ -a \\ u \\ -l \end{bmatrix}^T \begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ t_4 \end{bmatrix} & \\ \text{s.t. } \begin{bmatrix} A \\ -A \\ I \\ -I \end{bmatrix}^T \begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ t_4 \end{bmatrix} &= c \\ t_i &\ge 0 \,\forall i = 1,\dots,4 \end{align}

Simply the above LPP.

\begin{align} \max z = b^T t_1 - a^T t_2 + u^T t_3 - l^T t_4 & \\ \text{s.t. } A^T t_1 - A^T t_2 + t_3 - t_4 &= c \\ t_i &\ge 0 \,\forall i = 1,\dots,4 \end{align}