How do I prove that:
$$\sum\limits_{k=0}^m \binom{r}{k} \binom{m+n-r}{m-k} = \binom{m+n}{m} ~~~~~~~~~ (r <= m + n) $$
by using an algebraic identity?
My Attempt:
I know of the generating functions: $$ (1 + x)^n = \sum\limits_{k=0}^n \binom{r}{k} x^k ~~~~~ and ~~~~~~ \frac {1}{(1 + x)^{n + 1}} = \sum\limits_{k=0}^{\infty} \binom{n + k}{k} x^k $$
and after a bit of trial and error I came up with the algebraic identity:
$$(1 - x)^r \frac {1}{(1 - x)^{n + r + 1}} = \frac {1}{(1 - x)^{n + 1}} ~~~~~~~~~~~~~~~~~ (a)$$
The right hand side of (a) clearly matches the 2nd generating function. So:
$$ \frac {1}{(1 + x)^{n + 1}} = \sum\limits_{m=0}^{\infty} \binom{n + m}{m} x^m $$
The left hand side of (a) can be expressed as product of summations:
$$\begin{align*} \displaystyle{ (1 - x)^r \frac {1}{(1 - x)^{n + r + 1}} }
&=\displaystyle{ \sum\limits_{m=0}^{\infty} \binom{r}{m} (-x)^m \sum\limits_{k=0}^{\infty} \binom{n + r + k}{k} x^k } \ &=\displaystyle{ \sum\limits_{m=0}^{\infty} \sum\limits_{k=0}^{m} \binom{r}{k} (-x)^k \binom{n + r + m - k}{m - k} x^{m-k} } \ &=\displaystyle{ \sum\limits_{m=0}^{\infty} \sum\limits_{k=0}^{m} \binom{r}{k} \binom{n + r + m - k}{m - k} (-1)^k x^m } \end{align*}$$
But now I am stuck since I don't know how to make:
$$ \binom{n + r + m - k}{m - k} (-1)^k ~~~~ equal ~~~~ \binom{m+n-r}{m-k} ~~~~~ ????? $$
to complete the proof.
Will my method work or should I be using another algebraic identity? I am quite new to combinatorics so please keep concepts understandable by a beginner. Thanks :)
EDIT
The answer
It turns out that my equation wasn't taking me anywhere close to the answer - LOL! Here is the answer with the new algebraic identity:
$$\begin{align*}
(1 + x)^r (1 + x)^{m+n-r} &= (1 + x)^{m + n} \
\sum\limits_{m=0}^r \binom{r}{m} x^m \sum\limits_{k=0}^{m + n-r} \binom{n+m-r}{k} x^k &= \sum\limits_{m=0}^{n + m} \binom{n+m}{m} x^m \
\sum\limits_{m=0}^{r + (m+n-r)} \sum\limits_{k=0}^m \binom{r}{m} \binom{n+m-r}{m-k} x^m &= \sum\limits_{m=0}^{n + m} \binom{n+m}{m} x^m \
\sum\limits_{m=0}^{m+n} \sum\limits_{k=0}^m \binom{r}{m} \binom{n+m-r}{m-k} x^m &= \sum\limits_{m=0}^{n + m} \binom{n+m}{m} x^m \
\end{align*}$$
Equating coefficients gives:
$$\sum\limits_{k=0}^m \binom{r}{m} \binom{n+m-r}{m-k} = \binom{n+m}{m} ~~~~~~~~~~~~~~~~ QED!!! $$