Given: $$ \text{S}= \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n^2.2^n} $$
Consider the following Lemma,
Lemma:
$$ \displaystyle \int_{0}^1 \dfrac{ \ln x }{x+1} \mathrm{d}x = -\dfrac{\pi^2}{12}$$
Proof:
$ \displaystyle \int_{0}^1 \dfrac{ \ln x }{x+1} \mathrm{d}x = \displaystyle \int_{0}^1 \dfrac{ -\ln x }{1-x}\mathrm{d}x + \displaystyle \int_{0}^1 \dfrac{ -2\ln x }{x^2-1}\mathrm{d}x$
Also,
$\displaystyle \int_{0}^1 \dfrac{ -\ln x }{1-x}\mathrm{d}x = \displaystyle \int_{0}^1 \dfrac{ -\ln (1-x) }{x}\mathrm{d}x = \displaystyle \int_{0}^1 \dfrac{x+\frac{x^2}{2}+\frac{x^3}{3}+...}{x}\mathrm{d}x = \sum_{k=1}^\infty \dfrac{1}{k^2} = \frac{\pi^2}{6}$
and,
$\displaystyle \int_{0}^1 \dfrac{ \ln x }{x^2-1}\mathrm{d}x = \displaystyle \sum_{n=0}^{\infty} \int_{0}^1 x^{2n}.{\ln{x}} \ \mathrm{d}x $
$=- \displaystyle \sum_{n=0}^{\infty} {\dfrac{1}{(2n+1)^2}}$ (Using Integration By Parts)
$= \displaystyle \sum_{n=0}^{\infty} {\dfrac{1}{(2n)^2}} - \sum\limits_{n=0}^{\infty} {\dfrac{1}{n^2}}$
$=\dfrac{-3}{4}\zeta(2)= -\dfrac{\pi^2}{8}$
$\therefore \displaystyle \int_{0}^1 \dfrac{ \ln x }{x+1} \mathrm{d}x = \dfrac{\pi^2}{6} - \dfrac{\pi^2}{4} = -\dfrac{\pi^2}{12}$
This completes the proof of our Lemma.
Now,
$ \text{S}= \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n^2.2^n} $
$= - \displaystyle \sum_{n=1}^{\infty} \left( \dfrac{2^n-1}{n^2.2^n} - \dfrac{1}{n^2} \right)$
$ = - \displaystyle {\ln 2} \sum_{n=1}^{\infty} \left(\dfrac{1}{n} \int_{0}^1 2^{-nx} \mathrm{d}x \right) + \dfrac{\pi^2}{6}$
$ = - \displaystyle {\ln 2} \int_{0}^1 \left(\sum_{n=1}^{\infty} \dfrac{1}{n} \times {2^{-nx}} \right)\mathrm{d}x + \dfrac{\pi^2}{6}$
$ = \displaystyle {\ln 2} \int_{0}^1 \ln \left( \dfrac{2^x - 1}{2^x} \right)\mathrm{d}x + \dfrac{\pi^2}{6}$
$ = \displaystyle {\ln 2} \int_{0}^1 \ln (2^x - 1)\ \mathrm{d}x + \dfrac{\pi^2}{6} -\dfrac{\ln^2 2}{2}$
Now, substituting $(2^x - 1) = t$, we have,
$\text{S} = {\ln 2} \times \dfrac{1}{\ln 2} \displaystyle \int_{0}^1 \dfrac{ \ln t }{t+1} \mathrm{d}t + \dfrac{\pi^2}{6} -\dfrac{\ln^2 2}{2}$
$ = -\dfrac{\pi^2}{12} + \dfrac{\pi^2}{6} -\dfrac{\ln^2 2}{2}$ (Using the Lemma)
$=\boxed{\dfrac{\pi^2}{12} - \dfrac{\ln^2 2}{2}}$
\cdot
. Using\displaystyle
in the title of questions is frowned upon as it can do unwanted things to the site layout. And finally the guy's name is "Maclaurin". McLaren has more to do with motor sports. – kahen Mar 26 '15 at 21:45