Let $D_8\cong H\leq D_{16}=G$,
where
$$D_{16}=\{1, a, a^2, a^3, a^4, a^5, a^6, a^7, b, ba, ba^2, ba^3, ba^4, ba^5, ba^6, ba^7\}$$
and
$$H=\{1, a^2, a^4, a^6, b, ba^2, ba^4, ba^6\}.$$
Let $G$ act on $H$ by conjugation.
That is,
$g\cdot h=ghg^{-1}$.
Since $H$ is normal in $G$,
this action is well-defined.
Consider the permutation representation $\theta:G\to S_H$.
Recall that $\ker{\theta}=C_G(H)$.
In this case,
$\theta(g)$ is a group homomorphism on $H$,
the image of $\theta$ is contained in $\text{Aut }{H}$.
Then $$G/\ker{\theta}\cong \text{Im }{\theta}\leq \text{Aut }{H}.$$
It is easy to show that $\ker{\theta}=C_G(H)=Z(G)$.
Hence, $G/\ker{\theta}=G/Z(G)\cong D_8$.
Now we show that $\theta$ is onto.
Then $D_8\cong \text{Aut }{D_8}$ follows from the First Isomorphism Theorem.
For any $\varphi\in \text{Aut }{H}$,
we want to find $g\in G$ such that $\theta(g)=\varphi$.
Note that $a^2$ and $b$ are independent generator of $H$.
$\varphi$ is completely determined by $\varphi(a^2)$ and $\varphi(b)$.
Since $\varphi$ is an automorphism,
it preserve the order of the element.
Thus, $|\varphi(a^2)|=|a^2|=4$
and $|\varphi(b)|=|b|=2$.
Comparing the order,
we have $\varphi(a^2)\in \{a^2, a^6\}$ and $\varphi(b)\in \{b, ba^2, ba^4, ba^6\}$.
($\varphi(b)\neq a^4$, otherwise, $\theta$ is not onto.)
We have the following $8$ possibilities.
$$
\left\{\begin{array}{l}
\varphi(a^2)=a^2 \\
\varphi(b)=b
\end{array}\right.
\Rightarrow \varphi=\theta(a^4)|_{H} \text{ or }\theta(a^8)|_{H}
~~,~~
\left\{\begin{array}{l}
\varphi(a^2)=a^6 \\
\varphi(b)=b
\end{array}\right.
\Rightarrow \varphi=\theta(ba^4)|_{H} \text{ or }\theta(b)|_{H}
$$
$$
\left\{\begin{array}{l}
\varphi(a^2)=a^2 \\
\varphi(b)=ba^2
\end{array}\right.
\Rightarrow \varphi=\theta(a^3)|_{H} \text{ or }\theta(a^7)|_{H}
~~,~~
\left\{\begin{array}{l}
\varphi(a^2)=a^6 \\
\varphi(b)=ba^2
\end{array}\right.
\Rightarrow \varphi=\theta(ba^5)|_{H} \text{ or }\theta(ba)|_{H}
$$
$$
\left\{\begin{array}{l}
\varphi(a^2)=a^2 \\
\varphi(b)=ba^4
\end{array}\right.
\Rightarrow \varphi=\theta(a^2)|_{H} \text{ or }\theta(a^6)|_{H}
~~,~~
\left\{\begin{array}{l}
\varphi(a^2)=a^6 \\
\varphi(b)=ba^4
\end{array}\right.
\Rightarrow \varphi=\theta(ba^6)|_{H} \text{ or }\theta(ba^2)|_{H}
$$
$$
\left\{\begin{array}{l}
\varphi(a^2)=a^2 \\
\varphi(b)=ba^6
\end{array}\right.
\Rightarrow \varphi=\theta(a)|_{H} \text{ or }\theta(a^5)|_{H}
~~,~~
\left\{\begin{array}{l}
\varphi(a^2)=a^6 \\
\varphi(b)=ba^6
\end{array}\right.
\Rightarrow \varphi=\theta(ba^7)|_{H} \text{ or }\theta(ba^3)|_{H}
$$
Therefore, $\theta$ is onto. (For any $\varphi\in \text{Aut }{H}$,
if $\varphi(a^2)=a^{2+4i}$ and $\varphi(b)=ba^{2j}\in G=D_{16}$, where $i\in \{0,1\}$ and $j\in \{0,1,2,3\}$,
then choose $g=a^{4-j}b^i$.
We have $\theta(g)=\varphi$.)