$$\left| \frac{x+1}{x+2}-\frac34 \right| = \left| \frac{x-2}{4(x+2)}\right| $$
Now, choose $0<\delta \le 1$. This implies that $|x-2|<1$, which in turn implies
$$\left| \frac{1}{4(x+2)}\right|\le \frac{1}{12}$$
Then, for this choice of $\delta$ we have
$$\left| \frac{x+1}{x+2}-\frac34 \right| < \frac{1}{12} \left| x-2 \right|$$
Now, given any $\epsilon>0$,
$$\left| \frac{x+1}{x+2}-\frac34 \right| < \frac{1}{12} \left| x-2 \right|<\epsilon $$
whenever $|x-2|<\min(1,12 \epsilon)$. Therefore, choose $\delta =\min (1,12\epsilon)$ and we have it!