$X=(X_1,\dots, X_n)^\prime$ has a multivariate
normal distribution with $\mu_X=\mu {\bf 1}$ and $\Sigma_X=\sigma^2 I$.
Here ${\bf 1}$ is the column vector of all $1$s, while $I$ is the
$n\times n$ identity matrix.
Let $A$ be the matrix of an orthogonal transformation
that takes the vector $\bf 1$ into the vector $\sqrt{n}\, {\bf e}_1$.
Then the vector $U=AX$ is multivariate
normal with $\mu_U=\mu \sqrt{n}\, {\bf e}_1 $
and $\Sigma_U=\sigma^2 I$.
The first coordinate of the random vector $U$ is
$$U_1=(AX)^\prime{\bf e}_1=X^\prime A^\prime {\bf e}_1=
{1\over \sqrt{n}}\, X^\prime A^\prime A{\bf 1}
= {1\over \sqrt{n}}\, X^\prime {\bf 1}=\sqrt{n}\,\bar X.$$
Also, $$\sum_{i=1}^n X^2_i=X^\prime X= X^\prime A^\prime A X=U^\prime U
=n\bar X^2+\sum_{i=2}^n U_i^2,$$
and hence
$${(n-1)S^2 \over \sigma^2} = \sum_{i=2}^n (U_i/\sigma)^2\sim \chi^2_{n-1}.$$