$$P = \prod_{k=1}^{45} \csc^2(2k-1)^\circ=m^n$$
I realize that there must be some sort of trick in this.
$$P = \csc^2(1)\csc^2(3).....\csc^2(89) = \frac{1}{\sin^2(1)\sin^2(3)....\sin^2(89)}$$
I noticed that: $\sin(90 + x) = \cos(x)$ hence,
$$\sin(89) = \cos(-1) = \cos(359)$$ $$\sin(1) = \cos(-89) = \cos(271)$$ $$\cdots$$
$$P \cdot P = \frac{\cos^2(-1)\cos^2(-3)....}{\sin^2(1)\sin^2(3)....\sin^2(89)}$$
But that doesnt help?