Can someone help me find the continued fraction expansion for $\sqrt{7}$ just like I did for below.
For $\sqrt{3}$ I did this:
I was given that $x = \sqrt{3} -1 $
$x = \frac{1}{1+\frac{1}{2+x}} $
take the second
$x = \frac{1}{1+\frac{1}{2+x}} $
$x = \frac{1}{\frac{2+x+1}{2+x}} $
$x = \frac{2+x}{x+3} $
$x(x+3) = 2+x $
$x^2 +3x = 2+x \Rightarrow x^2+2x-2=0 $
find x,then we are done
how to write $x =\sqrt{3}-1$ in continued fraction using $x = \frac{1}{1+ \frac{1}{2+x}} $
$\sqrt{3}-1 = \dfrac{1}{1+ \dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\d frac{1}{2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfr ac{1}{2+..}}}}}}}}}}$
I just sub x value each time it will never end
$\sqrt{3}-1 = \dfrac{1}{1+ \dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\d frac{1}{2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfr ac{1}{2+..}}}}}}}}}} $
so
$\sqrt{3} = 1 +\dfrac{1}{1+ \dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\d frac{1}{2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfr ac{1}{2+..}}}}}}}}}} $
So it would be <1;1,2,1,2,1,2>