I'm trying to freshen up for school in another month, and I'm struggling with the simplest of proofs!
Problem:
For any natural number $n , n^3 + 2n$ is divisible by $3.$ This makes sense
Proof:
Basis Step: If $n = 0,$ then $n^3 + 2n = 0^3 +$ $2 \times 0 = 0.$ So it is divisible by $3.$
Induction: Assume that for an arbitrary natural number $n$, $n^3+ 2n$ is divisible by $3.$
Induction Hypothesis: To prove this for $n+1,$ first try to express $( n + 1 )^3 + 2( n + 1 )$ in terms of $n^3 + 2n$ and use the induction hypothesis. Got it
$$( n + 1 )^3+ 2( n + 1 ) = ( n^3 + 3n^2+ 3n + 1 ) + ( 2n + 2 ) \{\text{Just some simplifying}\}$$
$$ = ( n^3 + 2n ) + ( 3n^2+ 3n + 3 ) \{\text{simplifying and regrouping}\}$$ $$ = ( n^3 + 2n ) + 3( n^2 + n + 1 ) \{\text{factored out the 3}\}$$
which is divisible by $3$, because $(n^3 + 2n )$ is divisible by $3$ by the induction hypothesis. What?
Can someone explain that last part? I don't see how you can claim $(n^3+ 2n ) + 3( n^2 + n + 1 )$ is divisible by $3.$