3

Prove for $x>0$ $$ \frac{x}{1+x}<\ln(1+x)<x $$ I tried writing $\ln(1+x)=\ln(1+x)-\ln(1)$ and using the MVT for the $(1,1+x)$ interval. I eventually could prove the inequality but how do I have to prove even for $(0,1)$

1 Answers1

3

By the mean value theorem, given $x > 0$, there exists $c \in (0,x)$ such that $f(x) - f(0) = f'(c)x$, i.e., $\ln(1 + x) = \frac{x}{1 + c}$. Since $0 < c < x$, $\frac{1}{1 + x} < \frac{1}{1 + c} < 1$. Therefore $\frac{x}{1 + x} < \frac{x}{1 + c} < x$, i.e.,

$$\frac{x}{1 + x} < \ln(1 + x) < x.$$

kobe
  • 41,901