Let $A,B$ be disjoint with $|A|=n$ and $|B|=m$.
On the left hand side, replace $\binom{m}{i}=\binom{m}{m-i}$.
Let $$T=\left\{(C_1,C_2)\mid C_1\subseteq A\cup B, C_2\subseteq A, |C_1|=m, C_1\cap C_2=\emptyset\right\}$$
Define $f,g:T\to \mathbb N$ by:
$$\begin{align}
f&:(C_1,C_2)\mapsto |C_1\cap A|\\
g&:(C_1,C_2)\mapsto |C_2|
\end{align}$$
The $$|T|=\sum_{i=0}^{\infty} \left|f^{-1}(i)\right| = \sum_{i=0}^{\infty} \left|g^{-1}(i)\right|$$
Now, $f^{-1}(i)$ can be counted by picking $i$ elements of $A$ and $m-i$ elements of $B$ to get $C_1$, and then any subset of the remaining $n-i$ elements of $A$ to get $C_2$. So $$\left|f^{-1}(i)\right| = 2^{n-i}\binom{n}{i}\binom{m}{m-i}$$
And $g^{-1}(i)$ can be counted by picking $i$ elements of $A$ for $C_2$, and then any $m$ elements of the remaining $m+n-i$ elements of $A\cup B$ to get $C_1$. So
$$\left|g^{-1}(i)\right|= \binom{n}{i}\binom{n+m-i}{m}$$
Finally, the counts for $f^{-1}$ are zero if $i>m$ and the count for $g^{-1}$ are ero for $i>n$, supporting my comment above that the question needs to be corrected to have $\sum_{i=0}^n$ on the right, not $\sum_{i=0}^m$.