For the second sum use this this general result:
$$
\sum_{n=1}^{+\infty}\frac{1}{nz^n},\;\;\;\; z\in\mathbb C\;.
$$
We immediately see that $|z|>1$, in order to have absolute convergence.
We recall first two results:
$\bullet\;\;$First:
$$
\log(1+z)=\sum_{n=1}^{+\infty}(-1)^{n+1}\frac{z^n}{n},\;\;\;\forall |z|<1
$$
$\bullet\;\;$Second:
$$
\prod_{n=0}^{+\infty}\left(1+z^{2^{n}}\right)=
\sum_{n=0}^{+\infty}z^{n}=\frac{1}{1-z},\;\;\;\forall |z|<1
$$
The last one can be proved, showing by induction that $\prod_{k=0}^{N}\left(1+z^{2^{k}}\right)=\sum_{k=0}^{2^{N+1}-1}z^{k}$.
Ok:
\begin{align*}
\sum_{n=1}^{+\infty}\frac{1}{nz^n}=&
\sum_{n=1}^{+\infty}\frac{1}{n}\left(\frac{1}{z}\right)^n\\
=&\underbrace{\sum_{k=0}^{+\infty}\frac{1}{2k+1}\left(\frac{1}{z}\right)^{2k+1}-
\sum_{k=1}^{+\infty}\frac{1}{2k}\left(\frac{1}{z}\right)^{2k}}_{\log\left(1+\frac{1}{z}\right)}+
2\sum_{k=1}^{+\infty}\frac{1}{2k}\left(\frac{1}{z}\right)^{2k}\\
=&\log\left(1+\frac{1}{z}\right)+
\sum_{k=1}^{+\infty}\frac{1}{k}\left(\frac{1}{z^2}\right)^{k}\\
=&\log\left(1+\frac{1}{z}\right)+
\log\left(1+\frac{1}{z^2}\right)+\cdots\\
=&\sum_{n=0}^{+\infty}\log\left(1+\frac{1}{z^{2^n}}\right)\\
=&\log\left(\prod_{n=0}^{+\infty}\left(1+\left(\frac{1}{z}\right)^{2^n}\right)\right)\\
=&\log\left(\frac{z}{z-1}\right)
\end{align*}