The series is just $J_0(x)$, and thus your integral is
$$
\int_0^{+\infty}e^{-a x}J_0(x)\,dx=\frac{1}{\sqrt{1+a^2}}.
$$
Update
Since this was the integral you actually wanted to compute, let me add how it can be done using the integral formula of $J_0$. You already have an answer using the power series.
I assume that you have the integral formula
$$
J_0(x)=\frac{2}{\pi}\int_0^{\pi/2}\cos(x\cos\theta)\,d\theta
$$
and that you are aware of (integrate by parts two times)
$$
\int_0^{+\infty} e^{-ax}\cos b x\,dx=\frac{a}{a^2+b^2}.
$$
Then (please try to fill in the details in the steps below), by changing order of integration, and invoking the integrals above
$$
\begin{aligned}
\int_0^{+\infty}e^{-a x}J_0(x)\,dx & = \frac{2}{\pi}\int_0^{+\infty}e^{-ax}\int_0^{\pi/2}\cos(x\cos\theta)\,d\theta\,dx\\
&=\frac{2}{\pi}\int_0^{\pi/2}\int_0^{+\infty}e^{-ax}\cos(x\cos\theta)\,dx\,d\theta\\
&=\frac{2}{\pi}\int_0^{\pi/2}\frac{a}{a^2+\cos^2\theta}\,d\theta\\
&=\frac{2}{\pi}\int_0^{\pi/2}\frac{a}{a^2\tan^2\theta+1+a^2}\frac{1}{\cos^2\theta}\,d\theta\\
&=\frac{2}{\pi}\biggl[\frac{1}{\sqrt{1+a^2}}\arctan\Bigl(\frac{a\tan\theta}{\sqrt{1+a^2}}\Bigr)\biggr]_0^{\pi/2}\\
&=\frac{1}{\sqrt{1+a^2}}.
\end{aligned}
$$