I'm having some trouble with this question
Show that $$\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\dots=\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\dots=2^{n-1}$$
Attempt:
Expanding $(1+1)^n=2^n$ $$\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\binom{n}{3}+\binom{n}{4}+\dots+\binom{n}{n}=2^n$$
Expanding $(1-1)^n=0$ $$\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\binom{n}{4}+\dots+(-1)^n\binom{n}{n}=0$$
And I'm stuck here. The solution says "Adding these two equalities yields the required one".
I can see how the terms will cancel out,however I don't see how $2^n+0 = 2^{n-1}$