I had this integral as an exercise: $\int {1\over \sqrt{a^2-x^2}}dx$.
On one hand: $\int {1\over \sqrt{a^2-x^2}}dx=\int {1\over a\sqrt{1-({x\over a})^2}}dx$. ${x\over a}=t$, $x=at$ $\Rightarrow dx=adt$ and I get $\int {1\over a\sqrt{1-t}}adt=\int {1\over \sqrt{1-t^2}}dt=\arcsin t+c=\arcsin ({x\over a})+c$.
On the other hand: $\int {1\over \sqrt{a^2-x^2}}dx=-\int -{1\over a\sqrt{1-({x\over a})^2}}dx$. ${x\over a}=t$. I get $-\int -{1\over a\sqrt{1-t}}adt=-\int -{1\over \sqrt{1-t^2}}dt=-\arccos n t+c=-\arccos ({x\over a})+c$.
Those two functions are definitely not the same. What could explain this?
I would appreciate your help.