Yet another:
$$
\begin{align}
x\log_2\left(1+\frac ax\right)&=b\tag{1}\\
1+\frac ax&=e^{b\log(2)/x}\tag{2}\\
1+\frac ax&=2^{-b/a}e^{\large\frac{b\log(2)}a\left(1+\frac ax\right)}\tag{3}\\
\color{#00A000}{-\frac{b\log(2)}a\left(1+\frac ax\right)}e^{\color{#00A000}{\large-\frac{b\log(2)}a\left(1+\frac ax\right)}}&=-\frac{b\log(2)}a2^{-b/a}\tag{4}\\
-\frac{b\log(2)}a\left(1+\frac ax\right)&=\mathrm{W}\!\left(-\frac{b\log(2)}a2^{-b/a}\right)\tag{5}\\
x&=\bbox[5px,border:2px solid #F0C060]{\frac{-ab\log(2)}{b\log(2)+a\mathrm{W}\!\left(-\frac{b\log(2)}a2^{-b/a}\right)}}\tag{6}\\
&=\bbox[5px,border:2px solid #F0C060]{\frac{-\lambda a}{\lambda+\mathrm{W}\!\left(-\lambda e^{-\lambda}\right)}}\tag{7}
\end{align}
$$
Explanation:
$(2)$: multiply by $\frac{\log(2)}x$ and exponentiate
$(3)$: add $\frac{b\log(2)}a$ to the exponent and divide by $2^{b/a}$
$(4)$: multiply both sides by $-\frac{b\log(2)}ae^{\large-\frac{b\log(2)}a\left(1+\frac ax\right)}$
$(5)$: apply $\mathrm{W}$
$(6)$: algebraically solve for $x$
$(7)$: substitute $\lambda=\frac{b\log(2)}a$
Note that in $(7)$, it appears that $\mathrm{W}\!\left(-\lambda e^{-\lambda}\right)=-\lambda$, making the denominator $0$. However, when the argument of $\mathrm{W}$ is negative, there are two branches. Thus, we need to use the other branch of $\mathrm{W}$ so that the denominator is not $0$.