Yes, any convex quadrilateral can be circumscribed by an infinite number of elipses.
In the proof I draw a distinction between two cases: 1) a convex quadrilateral is not a parallelogram; 2) a convex quadrilateral is a parallelogram
Proof
Without loss of generality, let $L_1\equiv m_1x -y +r_1=0$, $L_2\equiv m_2x -y +r_2=0$, $L_3\equiv m_3x -y +r_3=0$, $L_4\equiv m_4x -y +r_4=0$ be the equations of lines $AB$, $BC$, $CD$, $DA$ of a quadrilateral ABCD.
Let us suppose ABCD is not a parallelogram. Consequently at least there is a pair of opposite sides which aren't parallel, say, AB and CD. Therefore we may assume $m_1\neq m_3$.
All the conics which circumscribe the quadrilateral ABCD can be given by the equation $kL_1L_3+L_2L_4=0$ (except the degenerate conic consisting of the pair of lines $AB$ and $CD$).
Therefore all the conics circumscribing the quadrilateral (except the mentioned degenerate conic) are given by the equation
$$k(m_1x -y +r_1)(m_3x -y +r_3)+(m_2x -y +r_2)(m_4x -y +r_4)=0,$$
$$(m_1m_3k +m_2m_4)x^2-((m_1+m_3)k+(m_2+m_4))xy+(k+1)y^2+...=0$$
The type of this circumscribing conic is given by
$$\delta=(km_1m_3+m_2m_4)(k+1)-\frac 14(k(m_1+m_3)+(m_2+m_4))^2,$$
This circumscribing conic is an ellipse if $\delta>0$, an hyperbole if $\delta<0$, a parabola if $\delta=0$.
Developing $\delta$ we get
$$4\delta= 4m_1m_3k^2+4m_2m_4k+4m_1m_3k+4m_2m_4-((m_1+m_3)^2k^2+2(m_1+m_3)(m_2+m_4)k+(m_2+m_4)^2),$$
$$4\delta=-(m_1-m_3)^2k^2+2[2m_2m_4+2m_1m_3-(m_1+m_3)(m_2+m_4)]k-(m_2-m_4)^2,$$
$$4\delta=-(m_1-m_3)^2k^2+2[(m_1-m_3)(m_2-m_4)+2(m_1-m_4)(m_3-m_2)]k-(m_2-m_4)^2$$
Now let $\psi$ be the discriminant of this second degree equation in k:
$$\psi=4[(m_1-m_3)(m_2-m_4)+2(m_1-m_4)(m_3-m_2)]^2-4(m_1-m_3)^2(m_2-m_4)^2,$$
$$\frac 14 \psi=[(m_1-m_3)(m_2-m_4)+2(m_1-m_4)(m_3-m_2)]^2-(m_1-m_3)^2(m_2-m_4)^2,$$
$$\frac 14 \psi=4(m_1-m_3)(m_2-m_4)(m_1-m_4)(m_3-m_2)+4(m_1-m_4)^2(m_3-m_2)^2,$$
$$\frac 1{16} \psi=(m_1-m_3)(m_2-m_4)(m_1-m_4)(m_3-m_2)+(m_1-m_4)^2(m_3-m_2)^2,$$
$$\frac 1{16} \psi=(m_1-m_4)(m_3-m_2)[(m_1-m_3)(m_2-m_4)+(m_1-m_4)(m_3-m_2)],$$
$$\frac 1{16} \psi=(m_1-m_4)(m_3-m_2)(m_1-m_2)(m_3-m_4),$$
$$\psi=16(m_1-m_2)(m_2-m_3)(m_3-m_4)(m_4-m_1)$$
As a corollary of the theorem stated and proved in The concave quadrilateral and the slopes of its sides,
ABCD is convex quadrilateral $\Rightarrow$ $\psi>0$ $\Rightarrow$ the equation $\delta=0$ admits two distinct solutions, say, $k_1$ and $k_2$ ($k_1<k_2$).
Consequently, since $-(m_1-m_3)^2<0$, for $k_1<k<k_2$ we get $\delta>0$ and the quadrilateral is circumscribed by the ellipses given by the equation $kL_1L_3+L_2L_4=0$,
QED.
If ABCD is a parallelogram, then $m_1=m_3$ and $m_2=m_4$ and
$$\delta=4(m_1-m_2)^2k$$
Consequently for $k>0$, $\delta>0$. As a result, for $k>0$ ABCD is circumscribed by ellipses given by the equation $kL_1L_3+L_2L_4=0$,
QED.