$P(A) \cup P(B) = P(A \cup B)$ iff $A \subset B$ or $B \subset A$
I just need to proof the direction where right to left direction notice here we could easily go being $B \subset A$ if we do $B \subset A \cup B$ proof:
let $x \in P(A) \cup P(B) = P(A \cup B)$
We have $P(A \cup B) \subset P(A) \cup P(B)$
Hence $A \subset x \subset A \cup B \subset (x \subset A\text{ OR }x \subset B)$
Hence $A \subset B$.