Fix $n$ and define
$$
\begin{align}
f(z)
&=\frac{\Gamma(z)}{\Gamma(z+n)}
=(-1)^n\frac{\Gamma(1-(z+n))}{\Gamma(1-z)}\tag{1}
\end{align}
$$
then
$$
\Gamma(z)=\frac{f(z)\Gamma(z+n+1)}{z+n}\tag{2}
$$
Using
$$
\frac{\Gamma'(z)}{\Gamma(z)}
=\psi(z)
=-\gamma+\sum_{k=0}^\infty\left(\frac1{k+1}-\frac1{k+z}\right)\tag{3}
$$
and
$$
\frac{f'(z)}{f(z)}
=\psi(1-z)-\psi(1-(z+n))\tag{4}
$$
we can get the series
$$
\begin{align}
\Gamma(z+n+1)
&=\Gamma(1)+\Gamma'(1)(z+n)+\frac{\Gamma''(1)}2(z+n)^2+O(z+n)^3\\
&=1+\psi(1)(z+n)+\frac{\psi'(1)+\psi(1)^2}2(z+n)^2+O(z+n)^3\tag{5}
\end{align}
$$
and
$$
\begin{align}
f(z)
&=f(-n)+f'(-n)(z+n)+\frac{f''(-n)}2(z+n)^2+O(z+n)^3\\
&=\frac{(-1)^n}{n!}\left(\vphantom{\frac12}\right.1+(\psi(n+1)-\psi(1))(z+n)\\
&\hphantom{=\frac{(-1)^n}{n!}\left(\vphantom{\frac12}\right.}+\frac{(\psi(n+1)-\psi(1))^2-(\psi'(n+1)-\psi'(1))}2(z+n)^2\\
&\hphantom{=\frac{(-1)^n}{n!}\left(\vphantom{\frac12}\right.}+O(z+n)^3\left.\vphantom{\frac12}\right)\tag{6}
\end{align}
$$
Multiplying $(5)$ and $(6)$ and dividing by $z+n$ gives $\Gamma(z)$ near $z=-n$ to be
$$
\frac{(-1)^n}{n!}\left(\frac1{z+n}+\psi(n+1)+{\small\frac{\pi^2+3\psi(n+1)^2-3\psi'(n+1)}6}(z+n)+O(z+n)^2\right)\tag{7}
$$
Looking at the coefficient of $\frac1{z+n}$ in $(7)$, we get
$$
\bbox[5px,border:2px solid #C0A000]{\operatorname*{Res}_{z=-n}\left(\Gamma(z)\right)=\frac{(-1)^n}{n!}}\tag{8}
$$
Looking at the coefficient of $\frac1{z+n}$ in the square of $(7)$, we get
$$
\bbox[5px,border:2px solid #C0A000]{\operatorname*{Res}_{z=-n}\left(\Gamma(z)^2\right)=\frac2{(n!)^2}\psi(n+1)}\tag{9}
$$
Looking at the coefficient of $\frac1{z+n}$ in the cube of $(7)$, we get
$$
\bbox[5px,border:2px solid #C0A000]{\operatorname*{Res}_{z=-n}\left(\Gamma(z)^3\right)=\frac{(-1)^n}{2(n!)^3}\left(\pi^2+9\psi(n+1)^2-3\psi'(n+1)\right)}\tag{10}
$$
To put the answers above in the same terms that Jack D'Aurizio uses, we have
$$
\psi(n+1)=H_n-\gamma\tag{11}
$$
and
$$
\psi'(n+1)=\frac{\pi^2}6-H_n^{(2)}\tag{12}
$$