I lost points on this proof because its incomplete and not descriptive enough. any suggestions?
If $a_i$ $\geq$ $0$, i $\geq$ 1
then, (1+$a_1$)(1+$a_2$).....(1+$a_n$)$\geq$ 1 + $a_1$ + $a_2$ + ..... + $a_n$
Proof by Induction:
case(n=1), we have (1+$a_1$) $\geq$ 1 + $a_1$ is true.
suppose true for n $\geq$ 1.
Then (1+$a_1$)(1+$a_2$)....(1+$a_n$)(1+$a_{n+1}$) $\geq$ (1+$a_1$ + $a_2$ + ...$a_n$)(1+$a_{n+1}$)
By the inductive hypothesis,
1+$a_1$+$a_2$+.....+$a_n$+$a_{n+1}$+$a_{n+1}$($a_1$+....+$a_n$) $\geq$ 1 + $a_1$ +....+$a_{n+1}$
Therefore by induction,
(1+$a_1$)(1+$a_2$).....(1+$a_n$)$\geq$ 1 + $a_1$ + $a_2$ + ..... + $a_n$ true $\forall$n$\in$$\mathbb{Z^+}$