Let $I$ and $J$ be the ideals of $R$. Prove/disprove: $I \cup J$ is (always) an Ideal of $R$.
Rough Sketch: Since, $I$ and $J$ are the ideals of $R$, we have $0_R \in I$ or $0_R \in J$. Hence, $0_R \in I \cup J$ Let, $x, y \in I$ or $x,y \in J$. Then, $x-y \in I$ or $x-y \in J$. Hence, $x-y \in I \cup J$. Now, let, $r \in R$. Then, $xr,yr \in I$ or $xr, yr \in J$. Then, $xr, yr \in I \cup J$. Also, $rx, ry \in I$ or $rx, ry \in J$. Hence, $rx, ry \in I \cup J$. Therefore, $I \cup J$ is an ideal of $R$. Is this correct? I need to make sure I am on the right track.