Fix $x\in\mathbb{R}$ with $x>-1$ and $x\neq 0$. For each $n\geq 2$, let $S(n)$ be the statement that $(1+x)^n>1+nx$ holds.
Base step: Since $x\neq 0, x^2>0$, and so $(1+x)^2=1+2x+x^2>1+2x, S(2)$ holds.
Inductive step: Fix $k\geq 2$, and suppose that $S(k)$ holds; that is, $(1+x)^k>1+kx$. Before proving $S(k+1)$, note the following "subtlety" concerning inequalities: If $a>b$ and $c>0$, then $ac>bc$; if $c<0$, then $a<b$ implies $ac<bc$. Finally, the proof of $S(k+1)$:
\begin{align}
(1+x)^{k+1} &= (1+x)^k(1+x)\\[0.5em]
&> (1+kx)(1+x)\tag{since $x+1>0$}\\[0.5em]
&= 1+x+kx+kx^2\\[0.5em]
&= 1+(k+1)x+kx^2\\[0.5em]
&> 1+(k+1)x.\tag{since $x\neq 0$}
\end{align}
Thus, $S(k+1)$ is true, completing the inductive step.
By mathematical induction, for all $n\geq 2$, the statement $S(n)$ is true. $\blacksquare$