We can consider the quadratic scheme above for a possible explicit bijection between $\mathbb N$ and $\mathbb N \times \mathbb N$.
The part $\mathbb N \times \mathbb N \to \mathbb N$ is easy via $(m,n) \mapsto m + \frac{(n + m)\cdot(n + m + 1)}{2}$ for $m$ going down (as row index) and $n$ going right (as column index).
Consider $(0,0) \mapsto 0$ and $(2,1) \mapsto 8$ and $(3,2) \mapsto 18$ as examples.
What ist the other map $\mathbb N \to \mathbb N \times \mathbb N$?