$$\Phi(b)=\int\limits_0^1 \frac{\log(1+bx)}{x+1}dx$$
$$\Phi'(b)=\int\limits_0^1 \frac{x}{(bx+1)(x+1)}dx$$
$$\Phi'(b)=\int\limits_0^1 \frac{1}{bx+1}dx-\int\limits_0^1 \frac{1}{(x+1)(bx+1)}dx$$
$$\Phi'(b)=\frac{\log(b+1)}{b}-\frac{1}{1-b}\int\limits_0^1 \left(\frac{1}{x+1}-
\frac{b}{bx+1}\right) dx$$
$$\Phi'(b)=\frac{\log(b+1)}{b}-\frac{\log2}{1-b}+\frac{\log(b+1)}{1-b}$$
With a different approach:
$$\Phi(b)=\int\limits_0^1 \frac{\log(1+bx)}{x+1}dx=\int\limits_0^1 \int\limits_0^{bx}\frac{dx \cdot dy}{(1+y)(1+x)}$$
Putting $y=bxu$ gives
$$\Phi(b)=\int\limits_0^1 \frac{\log(1+bx)}{x+1}dx=\int\limits_0^1 \int\limits_0^{1}\frac{b \cdot x dx \cdot du}{(1+bxu)(1+x)}$$
Some partial fraction decomposition and trickery will give you
$$\Phi(b)=\int\limits_0^b \frac{\log(1+x)}{x}dx + \log2 \log|b-1|+\int\limits_0^b\frac{\log(1+x)}{1-x}dx$$
Note that the first integral is a Dilogarithm and the latter is most probably one too (there is a comment saying Maple gives the answer in terms of te Dilog)