How can i prove that : $$\binom{n}{0}^2+\binom{n}{1}^2+\binom{n}{2}^2+\cdots+\binom{n}{n}^2=\binom{2n}{n}$$
i tried to prove it : by
$$\binom{2n}{n} = \frac{(2n)!}{n!n!} = \frac{2^n (1\cdot3\cdot5\cdots(2n-1))}{n!}$$
but i can’t take advantage of it.