Here are some of my ideas:
1. Addition Formula: $\sin{x}$ and $\cos{x}$ are the unique functions satisfying:
$\sin(x + y) = \sin x \cos y + \cos x \sin y $
$\cos(x + y) = \cos x \cos y - \sin x \sin y$
$\sin 0 = 0\quad$ and $\quad\displaystyle{\lim_{x \rightarrow 0} \frac{\sin x }{x} = 1}$
$\cos 0 = 1\quad$ and $\quad\displaystyle{\lim_{x \rightarrow 0} \frac{1-\cos x}{x} = 0}$
2. Taylor Series:
$\displaystyle{\sin x = \sum_{n = 0}^{\infty} \frac{(-1)^n}{(2n+1)!}\;x^{2n+1}}$
$\displaystyle{\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}\;x^{2n}}$
3. Differential Equations: $\sin(x)$ and $\cos(x)$ are the unique solutions to $y'' = -y$, where $\sin(0) = \cos^\prime(0) = 0$ and $\sin^\prime(0) = \cos(0) = 1$.
4. Inverse Formula: We have:
$$\begin{align} \arcsin x &= \phantom{\frac{\pi}{2} + } \int_0^x \frac{1}{\sqrt{1 - t^2}}\, dt \\[6pt] \arccos x &= \frac{\pi}{2} - \int_0^x \frac{1}{\sqrt{1 - t^2}}\, dt \end{align}$$
Then $\sin x$ is the inverse of $\arcsin x$, extended appropriately to the real line, and $\cos x$ is similar.
Question: Are there any others that you like? In particular, are there any good rigorous ones coming from the original geometric definition?