Let $f(n)$ be the function defined by
$$ f(n) = \frac 1{\sqrt{5}} \left[ \left(1+\sqrt{5}\over2\right)^n- \left(1-\sqrt{5}\over2\right)^n \right] $$
How do you prove that $f(n) = f(n+2) - f(n+1)$ for all $n = 0, 1, 2, ...$ ?
Let $f(n)$ be the function defined by
$$ f(n) = \frac 1{\sqrt{5}} \left[ \left(1+\sqrt{5}\over2\right)^n- \left(1-\sqrt{5}\over2\right)^n \right] $$
How do you prove that $f(n) = f(n+2) - f(n+1)$ for all $n = 0, 1, 2, ...$ ?
Hint: note that $x = \frac 12 (1 \pm \sqrt{5})$ satisfies $$ x^2 - x - 1=0 $$ or, more generally, $$ x^n = x^{n+2} - x^{n+1} $$
$
s are your friends – Ben Grossmann Mar 01 '15 at 23:08