2

$\newcommand{\dist}{\operatorname{dist}}$Suppose $ (X,\rho ) $ is a metric space and $ S $ is a non empty subset of $ X $. Then how to show the function $ g_S:X\rightarrow \mathbb{R} $ given by $ g_{S}(x)=\dist(x,S) $ where $\dist(x,S)=\inf\lbrace \rho (x,s)\mid s\in S\rbrace $ is uniformly continuous?

3 Answers3

3

$\newcommand{\dist}{\operatorname{dist}}$Let $ \varepsilon >0 $. Put $ \delta = \varepsilon $. Then $ \delta >0 $.

Now let $x_1,x_2\in S $ be such that $ \rho (x_1,x_2)<\delta $ and let $s\in S$.

Observe that $ \rho (s,x_1)\leq \rho (s,x_2)+\rho (x_2,x_1) $.

Hence $ \dist(x_1,S)\leq \rho (s,x_1)\leq \rho (s,x_2)+\rho (x_1,x_2) $.

Therefore $ \dist(x_1,S)-\rho (x_1,x_2)\leq \rho (s,x_2) $.

Hence $ \dist(x_1,S)-\rho (x_1,x_2)\leq \dist(x_2,S) $.

Then $ \dist(x_1,S)-\dist(x_2,S)\leq \rho (x_1,x_2) $.

By symmetry $ \dist(x_2,S)-\dist(x_1,S)\leq \rho (x_1,x_2) $.

Hence $ |\dist(x_1,S)-\dist(x_{2},S)|\leq \rho (x_1,x_2) $.

Since $ \rho (x_1,x_2)<\varepsilon $ we have $ |\dist(x_{1},S)-\dist(x_{2},S)|\leq \varepsilon $.

Then $ |g_S(x_1)-g_S(x_2)|\leq \varepsilon $.

Therefore $ g_S $ is uniformly continuous on $ X $.

ASB
  • 3,999
1

Hint: Use the triangle inequality for two arbitrary argument values $x_1, x_2$ that are close to each other.

user2566092
  • 26,142
0

$\newcommand{\dist}{\operatorname{dist}}$Let $x,y \in X$ Observe that $\dist(y,S) \leq \rho(x,y) + \dist(x,S)$. Similarly, $\dist(x,S) \leq \rho(x,y) + \dist(y,S)$. Hence, $|g_S(x) - g_S(y)| \leq \rho(x,y)$. Uniform continuity follows.

Tom
  • 1,264