${\bf Hint}\rm\quad\ \ \gcd(a\!+\!1,\,\ a^{\large 2K}\!+1)\ =\ gcd(a\!+\!1,\,\color{#0a0}2)\,$ by Euclid's gcd algorithm.
${\bf Proof}\rm\ \ \ mod\ a\!+\!1\!:\,\ \color{#c00}a^{\large 2K}\!+1\: \equiv\ (\color{#c00}{-1})^{\large 2K}\!+1\:\equiv\ \color{#0a0}2,\ \ {\rm by}\ \ \color{#c00}{a\equiv -1,}\, \ {\rm by}\, \ a\!+\!1\equiv 0$
OP is case $\rm\,\ a=2^{\Large 2^{M}}\!\!,\ \ 2K = 2^{\large N-M} \Rightarrow\ a^{\large 2K}\! = 2^{\Large 2^{N}}\!,\ $ wlog $\rm\ N>M.$
Remark $\rm\ \gcd(a\!+\!1,f(a))\, =\, \gcd(a\!+\!1,f(-1))\,$ for any polynomial $\rm\,f(x)\,$ with integer coefficients, with proof exactly as above, except generally we need to use the Polynomial Congruence Rule vs. the Power or Product Rules.