0

How to prove that $p-mq \mid f(m)$ where $m$ is any integer,

$$f(x) = A_0 + A_1 x + A_2 x^2 + ... + A_{n-1} x^{n-1} + A_n x^n$$

$$f(x)∈ ℤ[x]$$

$p/q$ is a zero for $f(x)$ and $p$ and $q$ are coprime $⇒ \, ∃u,w ∈ ℤ \mid 1 = up + wq$.

Sebastiano
  • 7,649

2 Answers2

1

By nonmonic polynomial division algorithm $\, q^n f = (qx\!-\!p) g + k\,$ for $\,g\in\Bbb Z[x],\ n\in\Bbb N,k\in\Bbb Z.$ Evaluating at $\:x=p/q\:$ yields $\:k=0.\ $ Evaluating at $\:x =m\:$ yields $\:\color{#c00}{qm\!-\!p\mid q^n}\color{#0a0}{f(m)}.\,$ But $\,(qm\!-\!p,q)=(p,q)\!=\!1,\,$ so by Euclid $\,(\color{#c00}{qm\!-\!p,q^n})=1,\,$ therefore $\,qm\!-\!p\mid \color{#0a0}{f(m)}.$

Bill Dubuque
  • 272,048
0

Note first that for any $p,q$, $q^nf\bigl(\frac pq\bigr)$ is an integer. Now if $\frac pq$ is a root of $f$, \begin{align*} q^nf(m)=q^nf(m)-q^nf\Bigl(\frac pq\Bigr)&=\sum_{k=0}^n A_k q^{n-k}\Bigl(m^kq^k - p^k\Bigr)\\ &=\sum_{k=0}^n A_k q^{n-k}(mq-p)\Bigl((mq)^{k-1}+(mq)^{k-1}p+\dots+p^{k-1}\Bigr) \end{align*} which proves $q^nf(m)$ is divisible by $p-mq$. As $p$ and $q$ are coprime, $p-mq$ and $q^n$ are coprime too, so that, by Gauß's lemma, $p-mq$ divides $f(m)$.

Bernard
  • 175,478