Problem: Prove that $1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$ for $n \in \mathbb{N}$.
My work: So I think I have to do a proof by induction and I just wanted some help editing my proof.
My attempt:
Let $P(n)=1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$ for $n \in \mathbb{N}$. Then $$P(1)=1^2=\frac{1(1+1)(2+1)}{6}$$ $$1=\frac{6}{6}.$$ So $P(1)$ is true.
Next suppose that $P(k)=1^2+2^2+\cdots+k^2=\frac{k(k+1)(2k+1)}{6}$ for $k \in \mathbb{N}$. Then adding $(k+1)^2$ to both sides of $P(k)$ we obtain the following: $$1^2+2^2+\cdots+k^2+(k+1)^2=\frac{k(k+1)(2k+1)}{6}+(k+1)^2$$ $$=\frac{2k^3+3k^2+k+6(k^2+2k+1)}{6}$$ $$=\frac{2k^3+9k^2+13k+6}{6}$$ $$=\frac{(k^2+3k+2)(2k+3)}{6}$$ $$=\frac{(k+1)(k+2)(2k+3)}{6}$$ $$=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$ $$=P(k+1).$$ Thus $P(k)$ is true for $k \in \mathbb{N}$. Hence by mathematical induction, $1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$ is true for $n \in \mathbb{N}$.