1

If $p$ and $q$ are odd primes show that $$p|(9^q -1) \implies q|(p-1).$$ ....

I am having difficulty to prove this.

Yes that was the question I have misunderstood between 9 and q!!!

Bill Dubuque
  • 272,048
User8976
  • 12,637
  • 9
  • 42
  • 107

1 Answers1

4

Hint $ $ Apply twice: $\ 9^{\:\!\large n}\!\equiv 1\!\iff\! \color{#0a0}{{\rm ord}\,9}\mid n,\,$ by the Order Theorem, i.e.

$\!\!\bmod p\!:\ 9^{\:\!\large q}\equiv 1,\,$ so $\,9\,$ has $\rm\color{#0a0}{order}$ dividing $ $ prime $\,q,\,$ so it must be $\,\color{#0a0}q\,$ (not $\color{#c00}{\bf 1}$ else odd $\,p\mid 9^{\large \color{#c00}{\bf 1}}\!-1),\,$ thus by little Fermat $\,9^{\:\!\large p-1}\!\equiv 1,\,$ so $\,\color{#0a0}{q}\mid p\!-\!1.\ $ [note $\,p\mid 9^{\:\!\large q}\!-1\,\Rightarrow\,p\nmid 9,\,$ so Fermat applies].

Remark $ $ The same proof works if we replace $\,9\,$ by any integer $\,a\,$ and we add the hypothesis $\,p\nmid a^{\color{#c00}{\bf 1}}\!-1\,$ (to ensure $a$ has order $\,\rm\color{#0a0}{q}\,$ (vs. $\color{#c00}{\bf 1})$ modulo $\,p)$.

Bill Dubuque
  • 272,048