3

Let $ f(x)=5x^9+6x^8+3x^6+8x^5+9x^3+6x^2+8x+3 $. Prove that $x^nf(x)+12$ is reducible in $\mathbb Z[x]$ for any positive integer $n$.


This problem is due to polish mathematician Andrzej Schinzel.

Bill Dubuque
  • 272,048
k1.M
  • 5,428

1 Answers1

4

Let $\omega=e^{\frac{\pi i}{6}}$ be a primitive twelfth root of unity. Since: $$ f(\omega) = f(i) = 12i,\qquad f(-1)=-12,\qquad f(\omega^2)=12\omega^4$$ for any $n\in\mathbb{N}$ we have that $x^n f(x)+12$ is divided by some polynomial among: $$ (x+1),\quad(x^2+1),\quad(x^2+x+1),\quad(x^2-x+1),\quad(x^4-x^2+1).$$

Jack D'Aurizio
  • 353,855