6

Since $$\lim_{n\rightarrow \infty}\left(1+\frac{1}{n}\right)^n={e}$$

My strong hunch is that the following statement must also be true $$\lim_{n\rightarrow \infty}\left(1+\frac{r}{n}\right)^n = {e^{r}}$$ for all $r>0$.

But I can neither prove or disprove it, any idea on how to prove it? Or if the statement is not true, how it should be modified so that it is true?

Arturo Magidin
  • 398,050
Graviton
  • 2,292

2 Answers2

36

Your hunch is correct. Letting $u = \frac{n}{r}$, we have: $$\begin{align*} \lim_{n\to\infty}\left(1 + \frac{r}{n}\right)^n &= \lim_{n\to\infty}\left(\left(1+\frac{r}{n}\right)^{n/r}\right)^r\\ &= \lim_{u\to\infty}\left(\left(1 + \frac{1}{u}\right)^u\right)^r\\ &= \left(\lim_{u\to\infty}\left(1 + \frac{1}{u}\right)^u\right)^r\\ &= e^r. \end{align*}$$

Arturo Magidin
  • 398,050
14

Another way to see this. Suppose $$\lim_{n\to \infty} \left(1+\frac{r}{n}\right)^n = L.$$ Let us calculate $\ln(L)$:

$$\begin{align*} \ln(L) &= \ln\left(\lim_{n\to \infty} \left(1+\frac{r}{n}\right)^n \right)\\ &=\lim_{n\to \infty} \ln\left(\left(1+\frac{r}{n}\right)^n\right)\\ &=\lim_{n\to \infty} n\ln\left(1+\frac{r}{n} \right)\\ &=\lim_{n\to \infty} \frac{\ln\left(1+\frac{r}{n} \right)}{\frac{1}{n}}\\ &=\lim_{n\to\infty} \frac{\frac{1}{1+\frac{r}{n}}\cdot\frac{-r}{n^2}}{-\frac{1}{n^2}}\\ &=\lim_{n\to\infty} \frac{r}{1+\frac{r}{n}}\\ &=r, \end{align*}$$ where we have used the fact that $\ln(x)$ is continuous in $(0,\infty)$, and l'Hôpital's rule. Thus, $\ln(L)=r$, or equivalently, $L=e^r$.