I have to calculate the following integral: $$ \int\limits_0^{+\infty} \left(\frac{\sin \alpha x}{x}\right)^3\,dx, $$ using the Dirichlet integral: $$ \int\limits_0^{+\infty} \frac{\sin \alpha x}{x}\,dx = \frac{\pi}{2}\mathrm{sgn}\,\alpha. $$
It seems to me, that there exists some substitution.