If we have i.i.d. random variables$ \quad X_1,\dots , X_n, \ \text{where} \ X_k \sim \mathcal{N} (\mu_k,\sigma_k^2),$ $\quad$ then $$ Y =\sum_{k=1}^n a_k X_n \sim \mathcal{N} (\sum_{k=1}^n a_k \mu_k,\sum_{k=1}^n a_k^2\sigma_k^2). $$
But what we can do with similar (or at least simplified) linear combination of $ \ (X_k)_{k=1}^n \ , \ X_k \sim \chi^2(k) \ ? $
Example:
Let $X,Y \sim \mathcal{N}(0,1)$ be independent random variables. What is the distribution of $ Z = XY $ ?
$$ XY = \frac{1}{2}(X^2 + 2XY + Y^2) - \frac{1}{2}(X^2 + Y^2) =\left ( \frac{X+Y}{\sqrt{2}} \right ) ^2 - \frac{1}{2}(X^2 + Y^2) $$
Of course we have that $$ \frac{X+Y}{\sqrt{2}} = \frac{\frac{X+Y}{2} - 0}{1} \sqrt{2} \sim \mathcal{N}(0,1) $$
Denoting $ \ Z_1 = \left ( \frac{X+Y}{\sqrt{2}} \right )^2 \sim \chi^2(1) , \ $ $ \ Z_2 = X^2 + Y^2 \sim \chi^2(2) , \ $ we have
$$ XY = Z_1 + \frac{1}{2} Z_2 = \sum_{k=1}^2 \frac{Z_k}{k}, $$ where $ \ Z_k \sim \chi^2(k) .$
What more we can do with this kind of approach? I don't have any ideas, nor I can find anything useful at this matter.