Addendum Feb 27 2022. It appears from the comments that OP wanted
to prove
$$[z^n] \log^2 \frac{2}{1+\sqrt{1-4z}}
= {2n\choose n} (H_{2n-1}-H_n) \frac{1}{n}.$$
Using the result from the companion answers
$$[z^n] \log \frac{2}{1+\sqrt{1-4z}}
= \frac{1}{n} {2n-1\choose n}$$
the LHS becomes
$$\sum_{k=1}^{n-1} \frac{1}{k} {2k-1\choose k}
\frac{1}{n-k} {2n-2k-1\choose n-k}.$$
Using
$$\frac{1}{k} \frac{1}{n-k}
= \frac{1}{n} \frac{1}{k} + \frac{1}{n} \frac{1}{n-k}$$
this becomes
$$\frac{2}{n} \sum_{k=1}^{n-1} \frac{1}{n-k}
{2k-1\choose k} {2n-2k-1\choose n-k}
\\ = \frac{1}{2n} \sum_{k=1}^{n-1} \frac{1}{n-k}
{2k\choose k} {2n-2k \choose n-k}
\\ = -\frac{1}{2n^2} {2n\choose n}
+ \frac{1}{2n} [w^n] \log\frac{1}{1-w}
\sum_{k\ge 0} w^k
{2k\choose k} {2n-2k \choose n-k}.$$
Here we have extended to infinity due to the coefficient extractor in
w (note that $\log\frac{1}{1-w} = w+\cdots$) and canceled the value
for $k=0$ that was included in the sum. Continuing with the inner sum
term
$$[z^n] \frac{1}{\sqrt{1-4wz}} \frac{1}{\sqrt{1-4z}}
\\ = [z^n] \frac{1}{\sqrt{(1-4z)^2 - 4z (1-4z) (w-1)}}
\\ = [z^n] \frac{1}{1-4z}
\frac{1}{\sqrt{1-4z(w-1)/(1-4z)}}
\\ = [z^n] \sum_{k=0}^n
{2k\choose k} z^k (w-1)^k \frac{1}{(1-4z)^{k+1}}.$$
This is
$$\frac{1}{2n} [w^n] \log\frac{1}{1-w}
\sum_{k=0}^n
{2k\choose k} (w-1)^k {n\choose k} 4^{n-k}.$$
Recall from MSE
4316307
that with $1\le k\le n$
$$\frac{1}{k} = {n\choose k}
[w^n] \log\frac{1}{1-w} (w-1)^{n-k}.$$
Hence we get two pieces, the first is
$$\frac{1}{2n}
\sum_{k=0}^{n-1}
{2k\choose k} \frac{1}{n-k} 4^{n-k}.$$
and
$$\frac{1}{2n} [w^n] \log\frac{1}{1-w}
{2n\choose n} (w-1)^n.$$
We get for the second
$${2n\choose n} \frac{1}{2n}
\;\underset{w}{\mathrm{res}}\;
\frac{1}{w^{n+1}} \log\frac{1}{1-w} (-1)^n (1-w)^n.$$
We put $w/(1-w) = v$ so that $w=v/(1+v)$ and $dw = 1/(1+v)^2 \; dv$ to
get (without the scalar in front)
$$\;\underset{v}{\mathrm{res}}\;
\frac{1}{v^{n+1}} (1+v) \log\frac{1}{1-v/(1+v)}
(-1)^n \frac{1}{(1+v)^2}
\\ = \;\underset{v}{\mathrm{res}}\;
\frac{1}{v^{n+1}} (-1)^n \frac{1}{1+v} \log(1+v)
= - (-1)^n [v^n] \frac{1}{1+v} \log\frac{1}{1+v}
\\= - [v^n] \frac{1}{1-v} \log\frac{1}{1-v}.$$
With the scalar we get
$$- {2n\choose n} \frac{1}{2n} H_n.$$
We have the result if we can show that the first piece is
$${2n\choose n}
\left(H_{2n-1} + \frac{1}{2n} - \frac{1}{2} H_n\right) \frac{1}{n}
= {2n\choose n}
\left(H_{2n} - \frac{1}{2} H_n\right) \frac{1}{n}$$
i.e.
$$F_n = \sum_{k=0}^{n-1}
{2k\choose k} \frac{1}{n-k} 4^{n-k}
= {2n\choose n} (2H_{2n} - H_n).$$
We have for the LHS
$$4^n [w^n] \log\frac{1}{1-w}
\sum_{k=0}^{n-1} {2k\choose k} w^k 4^{-k}.$$
The coefficient extractor enforces the upper limit, we may extend to
infinity and we find
$$4^n [w^n] \log\frac{1}{1-w}
\frac{1}{\sqrt{1-w}}
= [w^n] \log\frac{1}{1-4w}
\frac{1}{\sqrt{1-4w}}.$$
Call the OGF $F(w).$ We get
$$F'(w) = \frac{4}{\sqrt{1-4w}^3}
+ \frac{2}{1-4w} F(w).$$
Extracting the coefficient on $[w^n]$ we get
$$(n+1) F_{n+1} = 4^{n+1} (-1)^n {-3/2\choose n}
+ 2 \sum_{q=0}^n F_q 4^{n-q}
\\ = 4^{n+1} (-1)^n \frac{n+1}{(-1/2)} {-1/2\choose n+1}
+ 2 \sum_{q=0}^n F_q 4^{n-q}
\\ = 2 (n+1) {2n+2\choose n+1}
+ 2 \sum_{q=0}^n F_q 4^{n-q}$$
which also yields
$$\frac{1}{4} (n+2) F_{n+2}
= \frac{1}{2} (n+2) {2n+4\choose n+2}
+ 2\sum_{q=0}^{n+1} F_q 4^{n-q}.$$
Subtract to get
$$\frac{1}{4} (n+2) F_{n+2}
\\ = (n+1) F_{n+1} + \frac{1}{2} (n+2) {2n+4\choose n+2}
- 2 (n+1) {2n+2\choose n+1}
+ \frac{1}{2} F_{n+1}.$$
Introducing $G_n = F_n {2n\choose n}^{-1}$ and dividing by
${2n+2\choose n+1}$ we get
$$\frac{1}{2} (2n+3) G_{n+2} = (n+3/2) G_{n+1} + 1
\quad\text{or}\quad
G_{n} = G_{n-1} + \frac{1}{n-1/2}.$$
so that
$$G_n = \sum_{q=1}^n \frac{1}{q-1/2}
= 2 \sum_{q=1}^n \frac{1}{2q-1}
= 2 H_{2n-1} - H_{n-1}
= 2 H_{2n} - H_n.$$
This is the claim (we have $F_0=G_0=0$ from the generating function)
and it completes the entire argument.